Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 4, 2027
-
A microservice-based application is composed of multiple self-contained components called microservices, and controlling inter-service communication is important for enforcing safety properties. Presently, inter-service communication is configured using microservice deployment tools. However, such tools only support a limited class of single-hop policies, which can be overly permissive because they ignore the rich service tree structure of microservice calls. Policies that can express the service tree structure can offer development and security teams more fine-grained control over communication patterns. To this end, we design an expressive policy language to specify service tree structures, and we develop a visibly pushdown automata-based dynamic enforcement mechanism to enforce service tree policies. Our technique is non-invasive: it does not require any changes to service implementations, and does not require access to microservice code. To realize our method, we build a runtime monitor on top of a service mesh, an emerging network infrastructure layer that can control inter-service communication during deployment. In particular, we employ the programmable network traffic filtering capabilities of Istio, a popular service mesh implementation, to implement an online and distributed monitor. Our experiments show that our monitor can enforce rich safety properties while adding minimal latency overhead on the order of milliseconds.more » « lessFree, publicly-accessible full text available October 9, 2026
-
Free, publicly-accessible full text available March 31, 2026
-
Optimizing request routing in large microservice-based applications is difficult, especially when applications span multiple geo-distributed clusters. In this paper, inspired by ideas from network traffic engineering, we propose Service Layer Traffic Engineering (SLATE), a new framework for request routing in microservices that span multiple clusters. SLATE leverages global knowledge of cluster states and multi-hop application graphs to centrally control the flow of requests in order to optimize end-to-end application latency and cost. Realizing such a system requires tackling several technical challenges unique to service layer, such as accounting for different request traffic classes, multi-hop call trees, and application latency profiles. We identify such challenges and build a preliminary prototype that addresses some of them. Preliminary evaluations of our prototype show how SLATE outperforms the state-of-the-art global load balancing approach (used by Meta’s Service Router and Google’s Traffic Director) by up to 3.5× in average latency and reduces egress bandwidth cost by up to 11.6×.more » « less
-
Free, publicly-accessible full text available March 31, 2026
An official website of the United States government
